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ON RADIATIVE HEAT TRANSFER IN A PLANE LAYER OF AN ABSORBING

MEDIUM

N. A. Rubtsov
Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki,

Recently there has arisen increased interest in the study of radiative
heat transfer between geometrically simple systems, both as autono-
mous problems and as elements of more complex problems.

Problems of this kind have been treated by many authors {1-11], who
have considered gray, diffusely emitting and absorbing boundaries

and gray nonscattering media. In most cases these investigations were
restricted either to the derivation of approximate formulas for the net
radiative flux, without an exact analysis of the temperature distribu-
tion in the layer [5=7], or to numerical computation [1=4], In the lat-
ter case, with the exception of [8], which contains a numerical analy-
sis for the case of optical symmetry, no attempt was made to analyze
the effect of the optical properties of the boundaries on the tempera-
ture field in the layer.

These papers can be divided into two groups according to the method
of analysis used. The first group includes papers based on the integral
equations of radiative transfer, with the corresponding integral analy=-
tical methods [1, 2]. Similar in nature are [3, 4] which use the slab
method, applicable to electrical-analog computation, as well as a
recent paper [8] based on probability methods.

The second group of papers [5~7]1s based on the so-called differential
methods. Of particular interest is [7], which develops these methods
to an advanced degree. In several papers the problem of radiative
transfer is analyzed in conjunction with more complex problems (cf.,
e.g., [10, 11].

In the present work we shall attempt to carry out an approximate
analytical study of problems connected with radiative heat transfer in
a plane layer of an absorbing, emitting, nonscattering gray medium
with temperature ~independent optical properties. The layer is bounded
by two parallel, diffusely emitting and diffusely reflecting, isother-
mal, gray planes. .

The paper presents the fundamental formulation of the problem,

which consists in; (a) the determination of the net heat flux on the
basis of given temperature distribution (direct formulation), and (b) the
determination of the temperature distribution on the basis of given dis-
tribution of the net radiative heat source per unit volume and boundary
temperatures (inverse formulation). The analysis is basec on integral
methods appropriate to the integral equations which represent the net
total and hemispherical radiation flux densities [121

The integral equations of radiative transfer in a
radiating system of arbitrary configuration are [12]
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Here (M) is the net total radiative heat source per
unit volume at the point M, E,; is the radiation flux
vector, E(M) is the net hemispherical radiative heat
flux at the point M, 7y(M) is the total black-body source
function, E;(M) is the hemispherical black-body radia-
tion flux density, w(M) is the volumetric absorption
(emission) coefficient of the medium at the point M,
and A(N) is the emissivity of the surface at the point
N. In Egs, (1)and (2) the resolving kernels Z(M; P),
T'(M, N) have the physical meaning of shape factors
between the fixed point M and the generic volume ele-
ment P and surface element N3
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In an analogous manner we can represent the resolving
kernels Z;(M, P), I'{(M, N) by the equations
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Here r is the distance between M and P or M and N,
and 6y, 6y are the angles between the generic ray
and the normals to the surface elements at M and N.

To apply the integral equations (1), (2) to the spe-
cific radiating system under consideration, we for-
mally introduce into these equations the geometrical
characteristics of the system. In particular, if we
take into account the fact that the surfaces Fy, Fy,
which constitute the boundary F, are nonconcave, we
find that the self-irradiation shape factors of the sur-
faces vanish, Q(P;, Nj) = Q(P; Nj)=0 (here Py and
P, are the intermediate reflecting area elements on
the surfaces Fy, F,, respectively), and that reflection
takes place between the two outer bounding surfaces
only.
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One can easily show that the integral terms which
appear in (1) and (2) can be expressed in explicit form
in terms of the geometrical-optical parameters Q(M,
N), M, P), Li(M, P). Thus in Eq. (2) for n(M) we
have
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The effect of multiple reflections is represented here
by the geometrical-optical relation
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Substituting the above geometrical-optical parameters,

analogous to radiation shape factors, into (2), we ob-

tain for i (M) an integral equation in a form which can

be used directly in further calculations.
In the course of the calculations we use the expo-

nential integral Ky(x), which is characteristic of trans-
fer processes in absorbing media, the optical depth 7,

and the optical thickness 7, of the layer,
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In the case when Fy and F, are optically homoge-
neous and isothermal, the expression for the net ra-
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diative heat source per unit volume is
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This expression agrees with ap analogous expression
for n(7) in [13], obtained by a direct radiative heat
flux balance.

]

b

Fig. 1. Distribution of dimen-
sionless temperature @(¢) as a
function of the optical depth
7/7, of a radiating gas bounded
by perfectly black surfaces.

Integrating the right and left sides of (6) term by
term, and using the rules for integration under an in-
tegral sign, we obtain an expression for the net hemi-
spherical radiative heat flux., Following [14], we rep-
resent the latter, as well as Eq. (6), in the form
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which contains the geometrical-optical parameters
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When the radiating system is in thermodynamic
equilibrium, equations (7) and (8) degenerate into the
integral equations for a closed system
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Using (9), we can represent (7) and (8) in the di-
mensionless form
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The analysis of heat transfer in radiative equilib~-
rium, when the net total radiative heat source per
unit volume is identically equal to zero and the net
hemispherical radiative heat flux is constant (E(7) =
= const, dE/d7 = 0), reduces to the simultaneous so-
lution of the equations
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0
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which follow from (10), (11). Note that the calculation
of the dimensionless heat flux q is reduced to a quad-
rature of ¢(r), which is obtained from the solution of

(12). Thus, essentially, the whole problem is reduced
to the analysis and solution of Eq. (12), which is a
Fredholm equation of the second kind with the kernel
Kyl 7 - ¢|, which has a logarithmic singularity at 7 =
= g_

Note, that when A; = A,, the conditionofoptical sym-
metry of the radiating system yields the obvious rela-
tion

(M) +olto,—1) =1, or ¢(Yy1) +¢ (Vote) =1,
@ (My1g) = e

On the other hand, in the general case Eq. (12) ob-
viously yields

1 R —R
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In the case of optical symmetry(R, = R,), ¢ (1) = 1/,
for 7, = 0. One should note the generalized form of the
integral equation (12), which is characteristic of trans-
fer processes which involve the notion of a mean free
path.

In particular, in the analysis of internal shear of
rarefied gases one obtains an integral equation which
describes the distribution of the mean velocity of a gas
bounded by two parallel planes, one of which is mov-
ing, which in the case of inelastic molecules takes on
the form [15]
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Here ! is the molecular mean free path, w; is the ve-
locity of the moving boundary, w(7) is the mean ve-
locity of the gas at the distance T away from the wall,
and h is the thickness of the gas layer. This equation
is identical to the integral equation

To

Eo(t) = 5 {BoKa(to— 1)+ { Ka | v— L Eo 2 },
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which is a particular case of (12), written in dimen-
sional form, for the case when the bounding walls are
perfectly black and the emissive power of one of these
is zero. \ ; o

The analysis of the molecular transfer in a plane
layer of a rarefied gas indicates that the proiile of -
the mean velocity is linear over a considerable por-
tion of gas layer [15]. Thus, as a first approximation
we may use a linear dependence of ¢(7) on the optical
depth 7

¢ (1) = g(0) + L =20, (14)

Substituting (14) into the integral equation (12), we
obtain the second approximation

p(1)=a()+b@®e O +c(x) (@) —2 O (15)
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where

a(®)= 345 (1), b=z [2—Ki()— Ka(to—1) +

25 — Kawo) (A (0 B+ 47 () 2],

(1) = E‘T_o[zw Ky (v) — Ky (To— 1) — ToKs (To—7) +
+2( — Ki (w) (47 (- — 47 0 52) ] —
— A (O Ky () + 3 A (D) (16)

Evaluating (15) at 1= 0 and at 7 = 7§, we obtain a
gystem of algebraic equations for ¢(0) and @{7y), which
has the solution

0) = 2 (0) (1 — ¢ (7)) 4- a (To) ¢ (0)
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Here a (0), a (1), b (0), & (), ¢ (0), and e (t,) are the
values of a, b, ¢ {Eq. (16)Jat T=0 and 7= T1,.

When the radiating system is optically symmetrical
(R; = Ry), the solution of (12) with the linear approxi-
mation can be written
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In the special case when the bounding walls are per-
fectly black (R; = Ry = 0), solution (18) takes on the
much simpler form

(1) = Vs — K3 (1) + T (1 — K2(T0))
P TF % (1 — K (v0)) — 2K (1a)’ (19)

and solution (15) becomes
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The distribution

Eo(f) — Eoa T
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as a function of the optical depth in a radiating gas
(Fig. 1) for % =0, 0.2, 0.5, 1.0, 2.0, 5.0, oo, calculated
from Eq. (20), is in very good agreement (within <1%)
with the exact numerical solution given in [2]. It can
be seen that the linear approximation is in satisfac-

tory (within <3% error) agreement with the second ap-
proximation to the solution of (12).

The temperature distribution in a plane layer of a
radiating gas is determined, as can be seen from (14)
(17), and (18), by the optical thickness of the layer and
by the optical properties of the radiating surfaces.
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Fig. 2. Dimensionless tem-
perature at the wall 7 = 0,

@{0), as a function of the op-
tical thickness of the gas layer,

Figure 2 shows the dimensionless temperature near
the wall 7= 0, ¢(0), which represents the temperature
slip, as a function of the optical thickness 7, for the
case of optical symmetry for the values Ry =R, =R =
=0, 0.2, 0.4, 0.6, 0.8 and 1.0.

As might be expected, the temperature slip ¢(0)
increases with increasing R and attains its maximum
value ¢(0) = 1/2, which is independent of 7;, for R =
= 1.0.* In the absence of optical symmetry (R; # R,),
the inflection point, which is characteristic for the
case with optical symmetry (Fig. 1), moves towards
the wall with the higher emissivity. Figure 3 shows
the distribution ¢(Z), based on the linear approxima-
tion in Eqs. (14) and (18), for Ry = 0.3 and Ry = 0.8
for the values 73 = 0,-0.2, 0.5, 1.0, 3.0, 5.0 and oo,

Generalizing our consideration o1t the approximate
solution of the integral equation (12), we note that such
equations have unbounded kernels of linear-potential
type, for which Fredholm's theorems in the plane of
the complex parameter A = 1/2 hold the same way as
they hold for continuous kernels. This allows us to
solve integral equations of the type of equation (12) by
the usual methods and, in particular, by the interation
method.

The solution of the particular form of (12) corre-
sponding to perfectly black surfaces,

k.

o0 =5 (Kam—o+ | Kilr—tle@d), @D

o

can be obtained in the following manner,

*Rigorously speaking, the case R = 1,0 should he
excluded from our consideration, since it does not
guarantee the uniqueness of the solution of the inte-
gral equations.
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Fig. 3. Distribution of ¢(Z) as

a function of the optical depth

7/7; in a gas layer bounded by

reflecting surfaces with R; =
=0.3 and Ry = 0.8,

Following [17], we differentiate (21) with respect
to 7. Differentiating under the integral sign we use
the obvious property of the kernel K| 7 — ¢|, which
can be written in the form of the conservation equa-
tion

oKy |t —¢|

.

8Ky |T—Lf
ac =0
After some simple transformations, we obtain
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Solving (22) by means of resolving kernels and in-
tegrating the solution from 0 to 7, we obtain

2 =00 +5 ¢ © L@+ rw—rd) @)

Assuming here T = 7,/2 and taking into account that
©(1y/2) = 1/2, we have

To

¢@=@+§nmwf" 24)

The general solution of (21) can be finally written
in the generalized form
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The good convergence of the iteration process al-
lows us to use (25) with approximate expressions for

the resolving kernels (the series of iterated kernels
may be truncated at the second term).

Note, that comparing the expressions for ¢(0) from
(19) and (24) we obtain the rigorously exact integral
identity

K;
| T de = ro= ey

0

From Eq. (13) for the net hemispherical radiation
flux it follows that the latter can be calculated by quad-
ratures of the temperature distribution.

To calculate the integral on the right side of (13),
we use the linear approximation for ¢(7) in the form
(14), where ¢ (0) and ¢(7,) are determined either from
the general solution (17), or from the particular solu-
tion (18) obtained for the case of optical symmetry.
After several transformations, the general expression
for the dimensionless flux can be written in the form

Ay (0)) —2 P (10) — ¢ (0)
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Fig. 4. Dimensional heat flux
q as a function of the optical
thickness 7.

Here we have used the equation of a closed system (9),
which for 7= 0 yields

A1 (0) — 45 (0) — \ W (©)dL = 0-

In the case of optical symmetry one should take into
account that

¢ (v =1 —¢(0)

Of particular interest is the particular case of (26)
corresponding to perfectly black surfaces. The dimen-
sionless flux takes then the relatively simple form

(L — Ky (mo) L 1 — 3K, (To))

(+&m+ T eyint

1 — Ka (1)
( +Toro zm(&ﬂ) @7)
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Calculations based on (27) are practically idemtical with the result
of exact numerical solutions given in {2]. Figure 4 shows q as a func-
tion of the optical thickness of the layer, calculated from Eq. (26) for
the values Ry = Ry =R =0, 0.2, 0.4, 0.6, and 0.8, The small circles
represent values calculated from the approximate formula

g = (/A1 1/As— 1 4+ 34 )7L, (28)

which has been obtained by the differential method, assuming isotropic
intensity distribution throughout the layer [7].

As could be expected, the agreement between the simplified for-
mula (28) and formula (26) increases with increasing R. The dashed
line in Fig. 4 represents the results for q for the case of optical asym-
metry (Ry = 0.3, Rp = 0.8), which are also in good agreement with
(28),

In Conclusion, one should note the conservative nature of q with
respect to the imposed temperature distribution.

In this paper we have demonstrated the continuous transition from
the general equations of radiative transfer (1), (2) to the particular
form (7), (8). We have constructed the integral equations (12), (18),
whose form is characteristic of transfer processes characterized by the
notion of a mean free path.

We have shown the physical motivation for the use of the linear ap-
proximation (14)=(17) for (7). Using this approximation to obtain the
second approximation (20), which practically coincides with the exact
solution, we have demonstrated the relatively fast convergence of the
iterative solution of (12).

In the case of optical symmetry of the radiating system, the tem-
perature distribution ¢(£) has a fixed inflection point at the midplane,
(independent of the optical thickness of the layer). The temperature
slip at the walls is determined by the optical thickness of the layer 7,
and by the optical properties of the surfaces R. The temperature slip de-
creases with increasing 79 and increases with increasing R,

In the absence of optical symmetry the inflection point moves away
from the midplane in the direction of the wall with the higher emissiv-
ity. The values of the net hemispherical radiation flux density calculat~
ed from (26) and (27) with the linear temperature distribution, coincide
with the results of exact numerical calculations.

The author would like to thank S. S, Kutateladze for his interest
in this work.
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